3.195 \(\int \frac{1}{\sqrt [4]{a+b x^4} (c+d x^4)} \, dx\)

Optimal. Leaf size=105 \[ \frac{\tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}} \]

[Out]

ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))]/(2*c^(3/4)*(b*c - a*d)^(1/4)) + ArcTanh[((b*c - a*d)
^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))]/(2*c^(3/4)*(b*c - a*d)^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0569827, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {377, 212, 208, 205} \[ \frac{\tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^4)^(1/4)*(c + d*x^4)),x]

[Out]

ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))]/(2*c^(3/4)*(b*c - a*d)^(1/4)) + ArcTanh[((b*c - a*d)
^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))]/(2*c^(3/4)*(b*c - a*d)^(1/4))

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )} \, dx &=\operatorname{Subst}\left (\int \frac{1}{c-(b c-a d) x^4} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{c}-\sqrt{b c-a d} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{2 \sqrt{c}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{c}+\sqrt{b c-a d} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{2 \sqrt{c}}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.0405078, size = 84, normalized size = 0.8 \[ \frac{\tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )+\tanh ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} \sqrt [4]{b c-a d}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^4)^(1/4)*(c + d*x^4)),x]

[Out]

(ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))] + ArcTanh[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4
)^(1/4))])/(2*c^(3/4)*(b*c - a*d)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.405, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{d{x}^{4}+c}{\frac{1}{\sqrt [4]{b{x}^{4}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^4+a)^(1/4)/(d*x^4+c),x)

[Out]

int(1/(b*x^4+a)^(1/4)/(d*x^4+c),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{1}{4}}{\left (d x^{4} + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*(d*x^4 + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt [4]{a + b x^{4}} \left (c + d x^{4}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**4+a)**(1/4)/(d*x**4+c),x)

[Out]

Integral(1/((a + b*x**4)**(1/4)*(c + d*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{1}{4}}{\left (d x^{4} + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*(d*x^4 + c)), x)